

BIM im Hochbau und Industriebau aus Sicht des Tragwerkplaners

Dipl.-Ing. Nicodemus Jansson, WTM Engineers GmbH

Kurzvorstellung

Dipl.-Ing. Nicodemus Jansson

Studium

Dipl.-Ing. Bauingenieurwesen Helsinki University of Technology, Finnland

Schwerpunkte

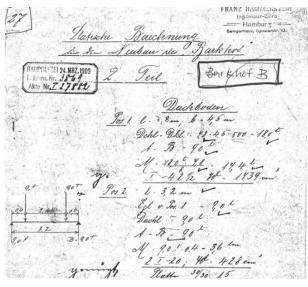
Projektleitung Tragwerksplanung im Hochbau BIM-Manager

Neubau Audi T3 Design Center Ingolstadt

Neubau Bürogebäude, Bei den Mühren 5, Hamburg

Schwedisches Theater, Helsinki. Finnland

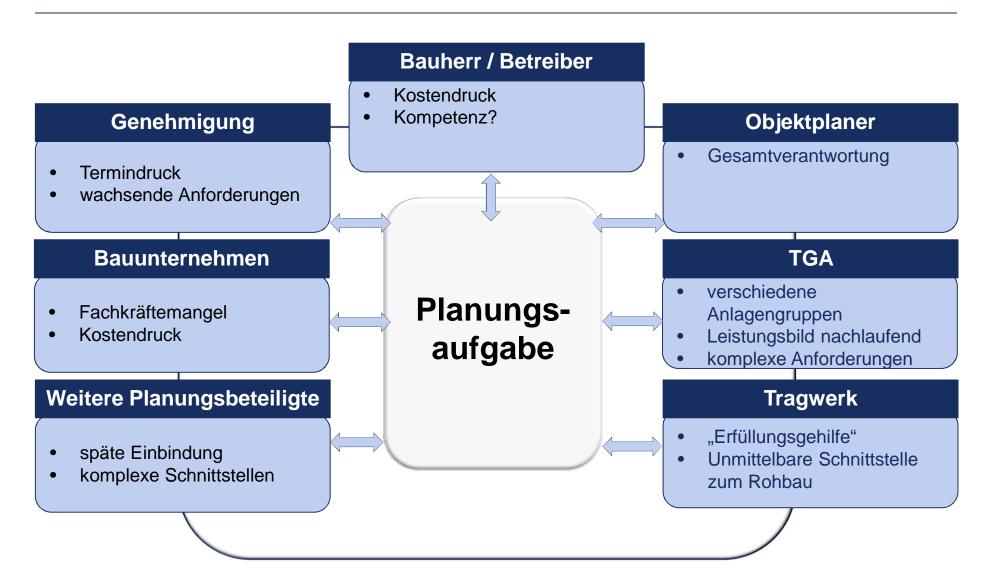
Südliches Überseequartier, HafenCity, Hamburg


- 1. Warum BIM in der Tragwerksplanung?
- 2. Einführung von BIM
- 3. Was können wir als Tragwerksplaner?
- 4. Beispiele
- 5. Fazit

Warum BIM in der Tragwerksplanung?

Aktueller Stand / Herausforderungen

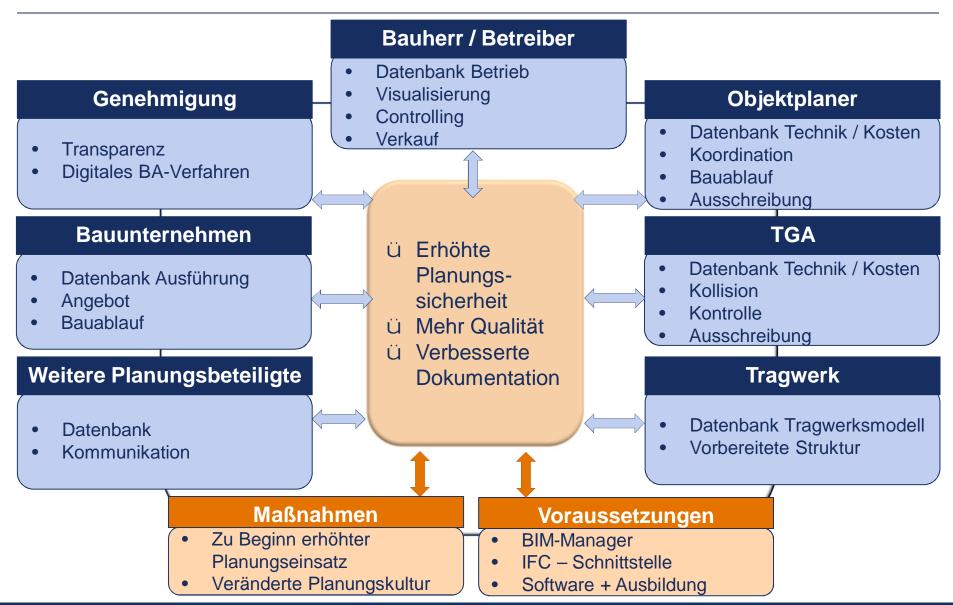
- Informationsflut
- wachsende Ansprüche
- geringes Zeitfenster
- hoher Kostendruck
- Baumeister vs.
 großes Projektteam
- keine integrale Planung ("jeder arbeitet für sich")
- usw.



Kontorhaus Barkhof B 1909

Aktueller Stand

WTM

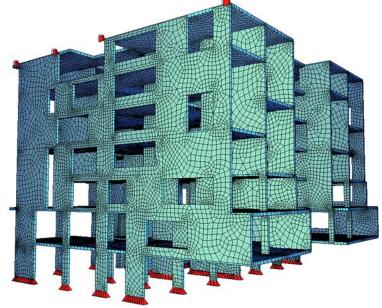

BIM: Vorteile und Nutzen

Vorteile im Gesamtprojekt

- Ein digitaler "Prototyp" wird erstellt
- Verbesserter Überblick im Gesamtprojekt für die Projektbeteiligte
- Zusammenarbeit und Datenaustausch mit Objekt-, TGA- und Werkstattplanung
- Datenaustausch mit dem Anlagenplaner bzw. Anlagenlieferant (Industriebau)
- Strukturierte, parametrische Datenbank mit allen baurelevanten Informationen

BIM: Vorteile und Nutzen

WTM ENGINEERS


BIM: Vorteile und Nutzen

Vorteile in der Tragwerksplanung:

Entwurfs-, Positions- und Ausführungspläne werden aus dem Gesamtmodell

abgeleitet

- Pläne sind Sichten auf die Datenbank
- Modell dient gleichzeitig als statisches Berechnungsmodell
- Bauteillisten und Mengenermittlung aus der Datenbank
- Kollisionsprüfung

Wohn- und Bürogebäude "Ocean's End" Am Sandtorkai

Fehler können häufiger schon in der Planungsphase erkannt werden

WTM ENGINEERS

BIM in der Welt

- Bundesbehörde in den USA schreibt seit 2007 eine BIM-Arbeitsweise bei Bauvorhaben der öffentlichen Hand verpflichtend vor.
- Ähnliche Auflagen:
 - Finnland und Norwegen seit 2007
 - Dänemark seit 2009
 - Niederlanden und Singapur seit 2012
 - Hongkong seit 2014
 - Großbritannien und Südkorea 2016
 - Deutschland 2020? (Stufenplan Digitales Planen und Bauen)
- Die Bewertung der Leistungsphasen der Deutschen HOAl ist immer noch stark auf traditionelle Planungsprozesse ausgelegt. (HOAl 2013: BIM nur als "Besondere Leistung")

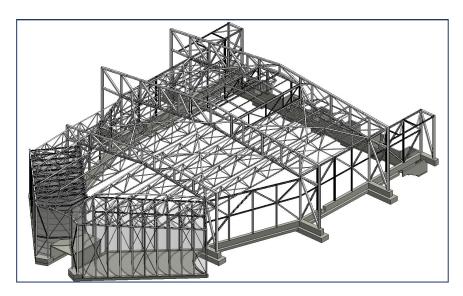
- 1. Warum BIM in der Tragwerksplanung?
- 2. Einführung von BIM
- 3. Was können wir als Tragwerksplaner?
- 4. Beispiele
- 5. Fazit

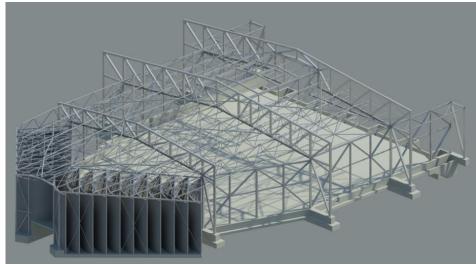
Einführung von BIM bei WTM

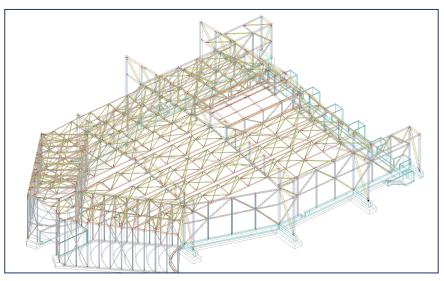
2008	2012	2013	2014	2015
Erste BIM Erfahrungen • Forschungseinrichtungen Tunnel Labore	Industriebau • Automobil- industrie	Einführung BIM Pilotprojekte • Forschungs- einrichtungen (R) • LSH Genf (V)	Industrie- und Hochbau Hochregallager Güterver- ladeanlagen	Ingenieur- bauwerke • Infrastruktur- maßnahmen

WTM ENGINEERS

Einführung von BIM bei WTM


- Software, die "BIM-fähig" ist
- Schulung
 - Software
 - BIM-Denkweise
 - 3D-Verständnis
 - Ingenieure und Konstrukteure (!)


Pilotprojekte

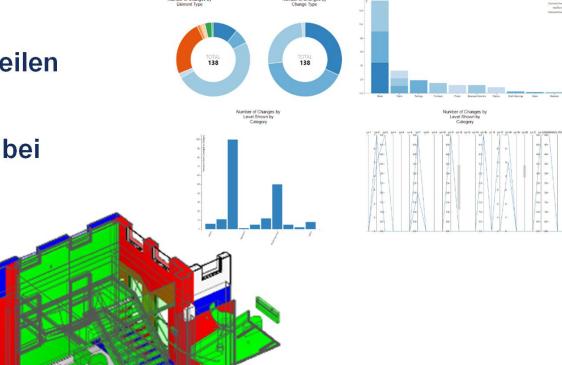

- Virtuelle / Reelle Projekte
- Bürostandards & Vorlagendatei
- Musterpläne mit Plankopf, Legende usw.
- Bemaßungen / Beschriftungen
- BIM "Handbuch" und Dokumentation

Pilotprojekt: Lärmschutzhalle Genf

- 1. Warum BIM in der Tragwerksplanung?
- 2. Einführung von BIM
- 3. Was können wir als Tragwerksplaner?
- 4. Beispiele
- 5. Fazit

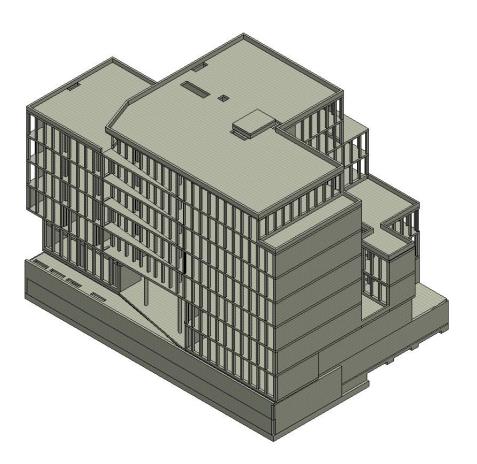
Was können wir als Tragwerksplaner?

- Architekturmodell übernehmen und Änderungen verfolgen
- Tragwerksmodell erstellen
- Pläne aus dem Modell ableiten
- Berechnungsmodell erstellen
- Schnittstelle zur Berechnungssoftware
- Mengen- / Kostenermittlung
- Terminplanverknüpfung & Bauablaufsimulation
- Kollisionsprüfung & Model Checker
- IFC Schnittstelle
- BIM Collaboration Format (BCF)

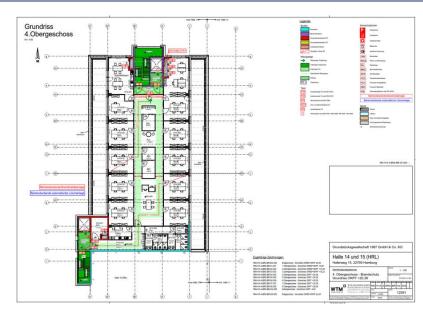

Was können wir als Tragwerksplaner?

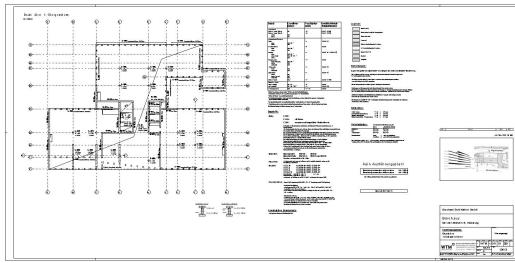
- Architekturmodell übernehmen und Änderungen verfolgen
- Tragwerksmodell erstellen
- Pläne aus dem Modell ableiten
- Berechnungsmodell erstellen
- Schnittstelle zur Berechnungssoftware
- Mengen- / Kostenermittlung
- Terminplanverknüpfung & Bauablaufsimulation
- Kollisionsprüfung & Model Checker
- IFC Schnittstelle
- BIM Collaboration Format (BCF)

Architekturmodell übernehmen und Änderungen verfolgen


- Kopieren und überwachen der tragenden Bauteile
- Mappingtabelle der Bauteilen (Zuordnung)
- Überwachungsprotokoll bei Änderungen
- Änderungen farblich Kennzeichnen

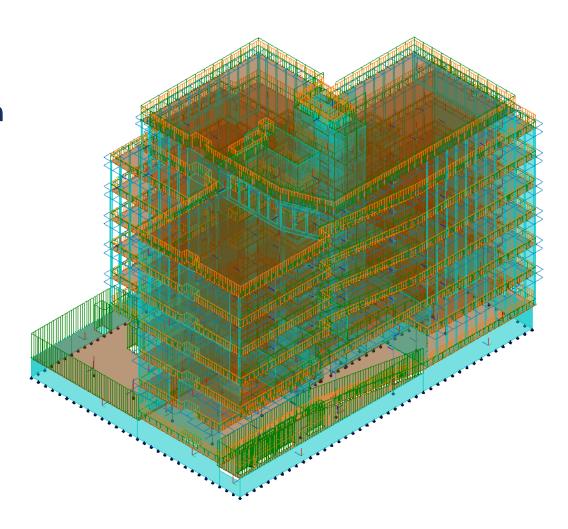
Tragwerksmodell erstellen


- Übernommene Bauteile nach Bedarf überarbeiten und ergänzen
- Eigenschaften wie Materialien definieren
- TragwerksrelevanteModellergänzungen

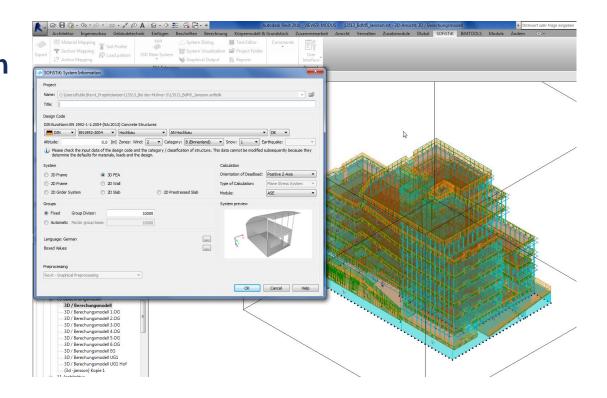


Pläne aus dem Modell ableiten

- Entwurfspläne
- Positionspläne
- Schalpläne
- Brandschutzpläne
- Bewehrungspläne

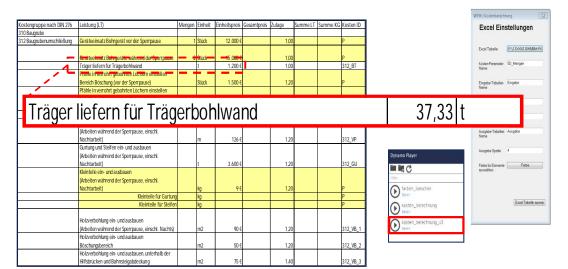


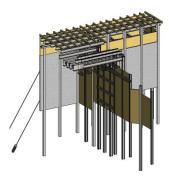
Berechnungsmodell erstellen


- Automatisch erstellte Berechnungsmodell anpassen & vereinfachen
- Auflagerbedingungen festlegen
- Knoteneigenschaften festlegen
- Lastfälle definieren
- Lasten definieren

Schnittstelle zur Berechnungssoftware

- BIM Software funktioniert als Preprozessor
- Berechnungsmodell so weit wie möglich in der BIM Software bearbeiten
- Lastfallsmapping
- Querschnittsmapping

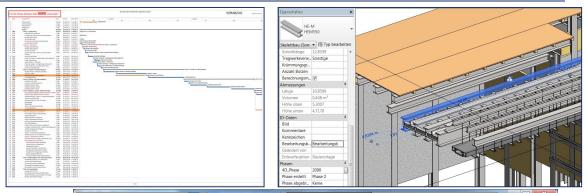


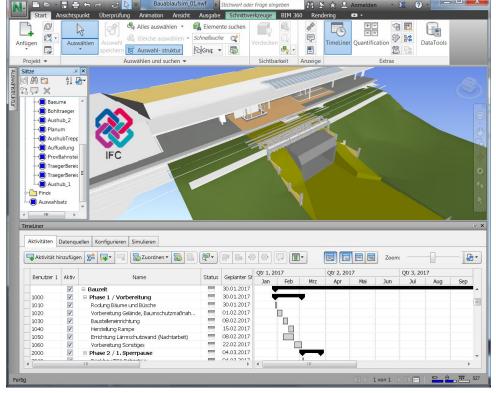


Mengen-/Kostenermittlung

- Mengen / Massen aus dem Modell ableiten
- Intelligente Bauteillisten
- Kostenberechnung
- Schnittstelle zur Ausschreibungssoftware

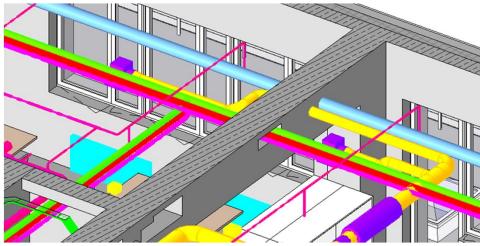
<trageri< th=""><th>ste></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></trageri<>	ste>												
Married Street		<12126>	(Amortisse)	or de bouits									
- 1	- 1	-14.4		ten (2. Zeilel)									
-	- 1	Geneve Aérop	ort>										
iten		Bauher (2. Zei	ile)>										
				144									
A	8		С	D	E	F	G	н	1	J	K	L	M
Nummer	Anzah		amile	Тур	Material	Typenkommentare	Beschreibung	Lánge	Schnittlänge	Querschnittsfläche	Volumen	Referenzebene	Kommentare
	1	Detail-1_Kar		Detail-1_Kasten-B 340/270/15, Baustahi 355	Baustahl - \$ 355				16,56 m	0,0 cm²	0,312 m²	+10,995_Achse	
	1	Detail-1_Kar Detail-1 Kar		Detail-1_Kasten-8 340/270/15, Baustahi 355 Detail-1_Kasten-8 340/270/15, Baustahi 355	Baustahl - S 355 Baustahl - S 355		-	18,18 m 16,70 m		0,0 cm²	0,337 m² 0.312 m²	+10,57 Höhe Qu	
	- 1	Detail-1_Kar		Detail-1_Kasten-8 340/270/15, Baustahi 355	Baustahi - S 355			18,18 m		0,0 cm²	0,312 m²	+10,995_Achse +10,57 Höhe Qu	
	1	Detail-1_Kar		Detail-1_Kasten-B 340/270/15, Baustahi 355	Baustahl - S 355	_	_	23,61 m		0,0 cm²	0,337 m²	+10,57 Höhe Qu	
	-	Detail-1_Kar		Detail-1_Kasten-B 340/270/15, Baustahi 355	Baustahl - S 355	_	_	23,61 m		0.0 cm²	0,443 m²	+10.57 Höhe Qu	
Date to N	seten B	340/270/15. B			Danataut - 9 300				115.85 m	0,0 ORF	2,185 m²	1*10,57 None Gu	
Decision 1_N	asien-o	340/2/0/10, 0/	ausiam 200.	9				110,30 ft	113,00 m		2,100 H		
	- 1	Detail-2 Kar	ster. R	Detail-2, Kasten-B 320/250/10, Baustahi 355	Baustahl - S 355			20.33 m	20 30 m	0.0 cm²	0.214 m²	+10,45 Höhe Unterg	
	- 1	Detail-2 Kar		Detail-2 Kasten-8 320/250/10, Baustahi 355	Baustahi - S 355			20,33 m		0.0 cm²	0.214 m²	+10.45 Höhe Unterg	
Ostal-2 K		320/250/10. B			04041811 - 0 200			40.65 m) 0,0 OII	0.427 m ^a	1 - 10,49 Holle Othery	
0000000	OSS FIRST			7									
	- 1	HEA Träger		HE 180 A Baustahi - S 355	Baustahl - S 355	HF 180 A	Stahl-Träger	5.00 m	4.69 m	45.3 cm ²	0.020 m²	+6,185 Höhe Mittelh	
	- 1	HEA Trager		HE 180 A Baustahi - S 355	Baustahl - S 355	HE 180 A	Stahl-Träger	5.00 m	4.74 m	45.3 cm²	0.021 m²	+5.185 Höhe Mittelh	
	1	HEA Trager		HE 180 A Baustahl - S 355	Baustahl - S 355	HE 180 A	Stahl-Träger	5,00 m	4,74 m	45,3 cm²	0,021 m ^a	+6,185 Höhe Mittelh	
	1	HEA Träger		HE 180 A Baustahl - S 355	Baustahl - S 355	HE 180 A	Stahl-Träger	5,00 m	4,87 m	45,3 cm²	0.021 m²	=6,185 Höhe Mittelh	
	- 1	HEA Träger		HE 180 A Baustahl - 5 355	Baustahl - S 355	HE 180 A	Stahl-Träger	3,50 m	3,26 m	45,3 cm²	0,014 m²	+10,57 Höhe Querp	
	1	HEA Träger		HE 180 A Baustahl - S 355	Baustahl - \$ 355	HE 180 A	Stahl-Träger	3,50 m	3,26 m	45,3 cm²	0,014 m²	+10,57 Höhe Querp	
	1	HEA Trager		HE 180 A Baustahl - S 355	Baustahl - S 355	HE 180 A	Stahl-Träger	3,45 m	3,26 m	45,3 cm²	0,014 m²	+10,57 Höhe Querp	
	. 1	HEA Trager		HE 180 A Baustahl - S 355	Baustahl - S 355	HE 180 A	Stahl-Träger	3,45 m	3,26 m	45,3 cm²	0,014 m²	+10,57 Höhe Querp	
HE 100 A	Baustahi	- S 355: 8						33,89 m	32,10 m		0,139 m ^a		
	.1	HEA Träger		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,27 m	5,14 m	53,8 cm²	0,026 m²	Ebene 0	
	1	HEA Träger		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,29 m	5,28 m	53,8 cm²	0,027 m ^a	Ebene 0	
	- 1	HEA Träger		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,29 m	5,28 m	53,8 cm²	0,027 m ^a	Ebene 0	
	- 1	HEA Trager		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,27 m	5,15 m	53,8 cm²	0,026 m²	Ebene 0	
	- 1	HEA Träger		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,00 m	4,74 m	53,8 cm²	0,024 m ^a	+6,185 Höhe Mittelh	
	- 1	HEA Trager		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,00 m	4,74 m	53,8 cm²	0,024 m²	+6,185 Höhe Mittelh	
	- 1	HEA Trager		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,00 m	4,87 m	53,8 cm²	0,025 m²	+6,185 Höhe Mittelh	
	1	HEA Träger		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,00 m	4,69 m	53,8 cm²	0,024 m²	+6,185 Höhe Mittelh	
	-1	HEA Träger		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,29 m	4,90 m	53,8 cm²	0,025 m²	+6,185 Höhe Mittelh	
	- 1	HEA Trager		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,29 m	4,98 m	53,8 cm²	0,025 m²	+6,185 Höhe Mittelh	
	1	HEA Träger		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,29 m	4,98 m	53,8 cm²	0,025 m²	+6,185 Höhe Mittelh	
	1	HEA Träger		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,29 m	4,90 m	53,8 cm²	0,025 m²	+6,185 Höhe Mittelh	
	- 1	HEA Trager		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,00 m	4,87 m	53,8 cm²	0,025 m ^a	+6,185 Höhe Mittelh	
	1	HEA Träger		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,00 m	4,74 m	53,8 cm²	0,024 m²	+6,185 Höhe Mittelh	
	1	HEA Trager		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	5,00 m	4,69 m	53,8 cm²	0,024 m ^a	+6,185 Höhe Mittelh	
	1	HEA Träger		HE 200 A Baustahl - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	15,00 m			0,075 m²	+10,57 Höhe Querp	
	1	HEA Trager		HE 200 A Baustahl - S 355 HE 200 A Baustahl - S 355	Baustahl - S 355 Baustahl - S 355	HE 200 A HE 200 A	Stahl-Träger Stahl-Träger	15,00 m	14,82 m 4.13 m	53,8 cm²	0,076 m² 0.021 m²	+6,185 Höhe Mittelh +12 500 OK TR Aku	
	1	HEA Träger HEA Träger		HE 200 A Baustahi - 5 355 HE 200 A Baustahi - 5 355	Baustahl - S 355	HE 200 A	Stahl-Träger Stahl-Träger	1,41 m	4,13 m 1.44 m	53,8 cm²	0,021 m²	+12,500 OK TR Aku	
	1	HEA Trager		HE 200 A Baustahl - 5 355 HE 200 A Baustahl - 5 355	Baustahi - S 355	HE 200 A	Stahl-Träger Stahl-Träger	21.67 m		53,8 cm²	0,007 m²	+12,500 OK TR AND	
_	1	HEA Träger		HE 200 A Baustahi - 5 355 HE 200 A Baustahi - 5 355	Baustahl - S 355	HE 200 A	Stahl-Träger Stahl-Träger	4.61 m	21,79 m 4.56 m	53,8 cm²	0,111 m²	+12,500 OK TR	
_	1	HEA Trager		HE 200 A Baustahi - 5 355 HE 200 A Baustahi - 5 355	Baustahi - S 355	HE 200 A	Stahl-Träger	9.84 m	4,56 m 9.75 m	53,8 cm²	0,022 m²	+12,500 OK TR	
	1	HEA Trager		HE 200 A Baustahi - S 355	Baustahi - S 355	HE 200 A	Stahl-Träger	9,84 m	9,75 m 9.74 m	53,8 cm²	0,049 m²	+12,500 OK TR	
	1	HEA Träger		HE 200 A Baustahi - S 355	Baustahl - S 355	HE 200 A	Stahl-Träger	9,84 m	9,74 m	53,8 cm²	0,049 m²	+12,500 OK TR	





Terminplanverknüpfung & Bauablaufsimulation

- Einbindung
 Phasenparameter in
 Softwarelandschaft
- Fachmodelle und Terminplan in Software einlesen
- Verknüpfung Terminplan und Bauwerksmodell
- Automatisierte Zuordnung (Bauteile – Termine)

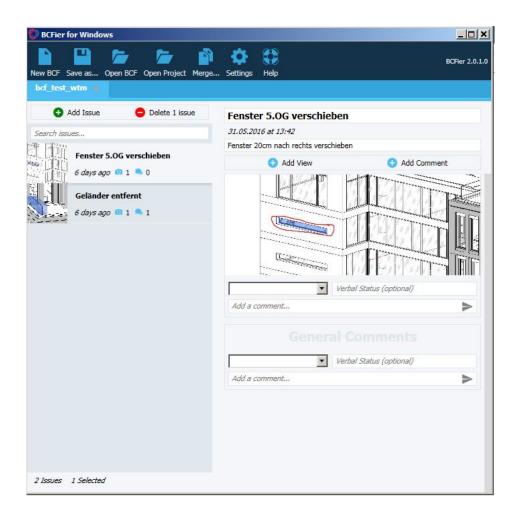


Kollisionsprüfung & Model Checker

- Durch Modellübernahme und Änderungsverfolgung
- Mit Kollisionsprüfungssoftware
- Visuell und manuell

IFC Schnittstelle

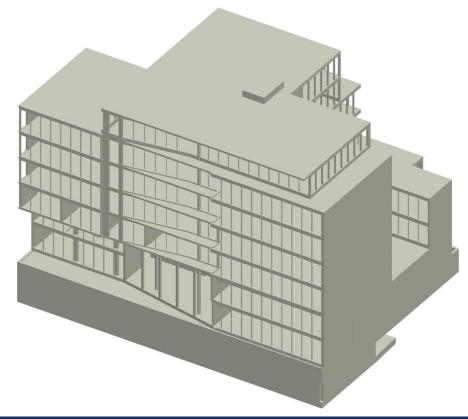
- Industry Foundation Classes
- Offener Standard


•	IFC Dateien:	IFC-Version	Zeitraum	Verwendung	
	als neues Projekt öffnen	1.0, 1.5, 2.0	2000–2002	Frühe Prototypen	
	 in einem vorhanden Projekt 				
	referenzieren	2x, 2x2	2002–2008	Für Early Adopters	
	 IFC Parameter k\u00f6nnen in den IFC Optionen Kategorien zugewiesen 	2x3	2008–2016	In praktischer Anwendung	
	werden	2x4 (4)	seit 2014	Aktuelle Version	
	 IFC-Datei sollte mind. in der 				
	Version 2x3 mit CV 2.0 vorhanden				
	sein				

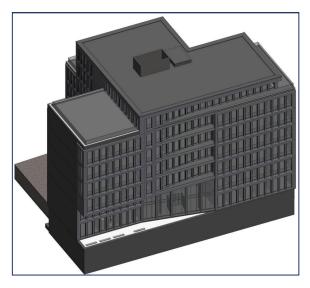
Berechnungsmodell

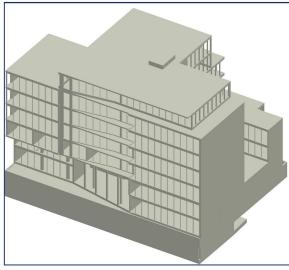
BIM Collaboration Format (BCF)

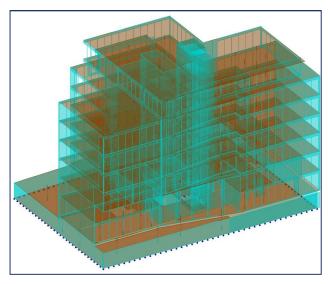
- Softwareübergreifende Kommunikation
- Intelligente Screenshots aus dem BIM Modell

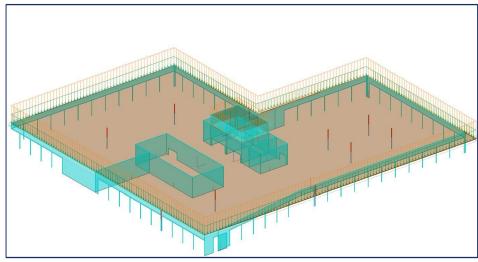

- 1. Warum BIM in der Tragwerksplanung?
- 2. Einführung von BIM
- 3. Was können wir als Tragwerksplaner?
- 4. Beispiele
- 5. Fazit

Beispiel - Hochbau

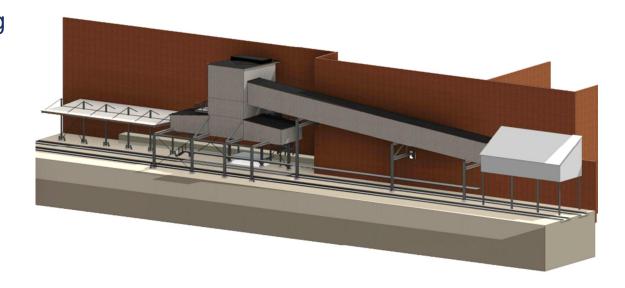

Bürohaus Bei den Mühren 5


- Massivbau
- Zusammenarbeit & Modellaustausch mit Architekten und TGA
- BIM Ziele
 - Pläne
 - Berechnungsmodell
 - Kollisionsprüfung
- weitere BIM Ziele / Möglichkeiten
 - Baugrube
 - Brandschutz
 - Wärmeschutz (Simulation)



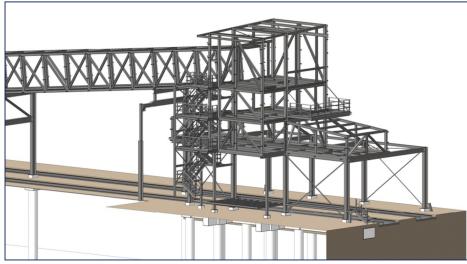


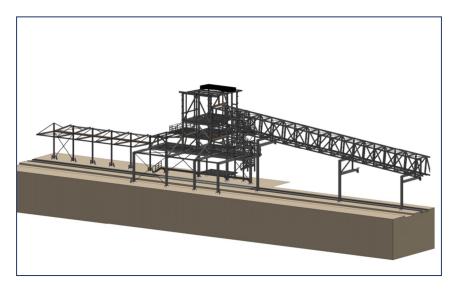
Beispiel - Hochbau

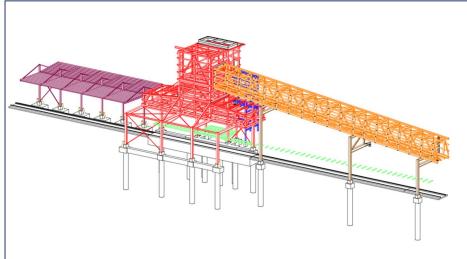


Beispiel - Industriebau

Neubau KMg-Gleisverladung, K+S Kali GmbH

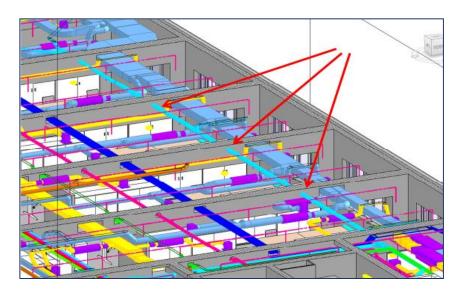

- Anbau an Bestand mit Bestandsmodell
- Vorwiegend Stahlbau
- Abstimmung mit Fördertechnik
- Vorbereitung Ausschreibung (Massen aus BIM-Modell)
- Pläne



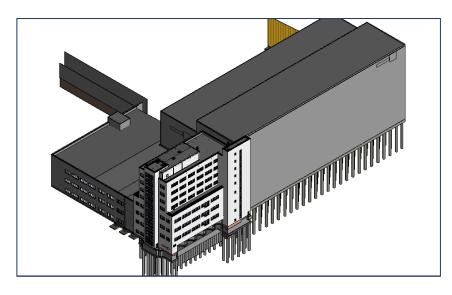


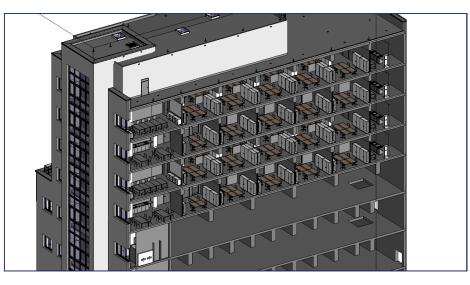
Beispiel - Industriebau

Beispiel - Hoch- & Industriebau


Hochregallager Schraubenzentrum Reyher

- Neubau Bürogebäude und Erweiterung vollautomatisches Hochregallager
- Objekt- und Tragwerksplanung
- Bestandsmodell
- VariantenuntersuchungenObjektplanung
- Pläne
- Berechnungsmodell
- Modellaustausch mit TGA
- Kollisionsprüfung





Beispiel - Hoch- & Industriebau

- 1. Warum BIM in der Tragwerksplanung?
- 2. Einführung von BIM
- 3. Was können wir als Tragwerksplaner?
- 4. Beispiele
- 5. Fazit

WTM

Fazit - Erfahrungen

- BIM erfordert mehr Zeit in den frühen Planungsphasen
- Variantenplanung im Modell flexibel handhabbar
- Entwurfs-, Positions-, Schal-, Brandschutzpläne sowie Bauteillisten etc. können aus dem Gesamtmodell abgeleitet werden
- Kollisionsprüfung möglich durch Modellübergabe, Kollisionsprüfungssoftware oder visuell & manuell
- Bewehrungsplanung im Modell möglich, aber bei den Programmen teilweise noch stark in der Entwicklung
- Für eine IFC-Zusammenarbeit muss die Schnittstelle verbessert werden, besonderes für TWP
- Anpassung des Modells für alle Nutzungen auf BIM-Ebene zu empfehlen
- BIM verbessert Kosten-, Planungs- und Terminsicherheit

"Standsicherheit ist nicht verhandelbar!"

Positionspapier BIM, Forschungsvereinigung Baustatik – Baupraxis 33.1

"Planer sind sieben Jahre hinter der aktuellen Software-Technologie."

Lynn Allen, Autodesk CAD-Q Days, 7.11.2013

